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Degenerating stable temporal Orr-Sommerfeld eigenmodes are studied for plane 
Poiseuille flow. The discrete spectrum of the eigenmodes is shown to possess infinitely 
many degeneracies, each appearing a t  a certain combination of Ic (the modulus of 
resultant wavenumber) and aR (the streamwise wavenumber time the Reynolds 
number). The eigenmodes are found to degenerate in a specific manner which 
confines the streamwise phase velocities of the degeneracies to be around of the 
centreline velocity. The responses of the degeneracies are investigated through the 
initial-value problem. The responses of the first four symmetric and the first two 
antisymmetric degeneracies are evaluated numerically for arbitrary initial dis- 
turbances expanded in terms of Chebyshev polynomials. The first symmetric and the 
first antisymmetric degeneracies exhibit temporal growth of the amplitudes in the 
wavenumber space. The maximum amplitudes are at most 7 times larger than the 
corresponding initial amplitudes. The amplitudes of the responses of the other four 
degeneracies decay rapidly owing to their higher damping rates. The time for which 
the degeneracy-response is in the growing phase is shown to be stretched with 
increasing Reynolds number. The degeneracies can therefore be active for longer 
periods of time a t  larger Reynolds numbers. 

1. Introduction 
The simplest approach to the question of laminar to turbulence transition in 

parallel shear flows is that by Orr & Sommerfeld (see e.g. Drazin & Reid 1981). For 
plane Poiseuille flow, the traditional two-dimensional investigations on the linear 
stability of the temporal Orr-Sommerfeld (0s) eigenmodes predict the critical 
Reynolds number R to be 5772.22 (Orszag 1971), where R is based on the centreline 
velocity and the channel half-height. Recent experiments on plane Poiseuille flow 
(Carlson, Widnall & Peters 1982 ; Alavyoon, Henningson & Alfredsson 1986) have 
shown that the initial stages of transition are accompanied by localized regions of 
turbulence known as turbulent spots. According to the latter, these spots cannot be 
generated for R < 1100, whichever the disturbance is, whereas for R > 2200, whic.h 
is obviously an apparatus-dependent value, the turbulent spots appear randomly 
without the use of external excitation. The experimental transition R is hence much 
lower than the theoretical prediction for instability. Nevertheless, according to the 
above experiments, the turbulent spots are accompanied by strong oblique linear 
waves, suggesting the validity of the linear stability approach at least in some parts 
of the spot environment. 

Extensive numerical computations of the Orr-Sommerfeld (OX) equation (Orszag 
1971 ; Mack 1976) have shown that the major part of the temporal eigenmodes is 
stable, leading to exponential decay in time, and therefore, in general, considered 
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unimportant from the transition point of view. Detailed mappings of thesc stable 
eigenmodes, as carried out in this study, have revealed the interesting feature of 
degeneracy, i.e. two simple 0s modes coalesce to form a single 0s mode of order 2. 
Degeneracy can possibly lead to algebraic growth for a short initial period followed 
by eventual decay. This and other related features of importance, discussed in 52.2, 
are the main focuses of this study. 

The earliest reference to degenerating eigenmodes seems to have appeared in the 
PhD thesis of Schensted (1961). Even though she did not consider this phenomenon 
to be probable in systems such as plane Poiseuille flow, she studied some of the 
mathematical consequences of degeneracy. Later, Betchov & Criminale (1966) came 
across a few pairs of coalescing eigenmodes, unexpectedly as claimed, in their 
calculations concerning combined stability problems, in space and time, of the 
inviscid laminar jet and wake. Caster (1968) showed, by considering the analyticity 
of the characteristic function determining the eigenvalues, why eigenmodes of order 
2 (i.e. degeneracies) must occur. He also analysed the influence of such modes on the 
perturbation generated by a pulse input. In the inviscid laminar jet and wake cases, 
the results seemed not in favour of the time-growing instability. Degeneracies among 
stable spatial 0s eigenmodes in plane Poiseuille flow as well as in boundary-layer 
type mean flows were recently analysed by Koch (1986). He assessed the physical 
relevance of a degenerated mode pair by the inverse of the corresponding spatial 
damping rate. According to Koch, the spatial degeneracy mechanism plays a passive 
role in the laminar-to-turbulence transition in plane Poiseuille flow and an active role 
in boundary-layer type flows. 

Degeneracies among stable temporal 0s eigenmodes in plane Poiseuille flow are of 
concern in the present paper. A methodical search for these degenerating eigenmodes 
($3) and their responses ($4) are the objectives of the study. The excitation of the 
degeneracies is studied through the initial-value problem, which seems well suited for 
the purpose, and the formulation of the problem follows somewhat that of 
Gustavsson (1986). The analyses are carried out in three-dimensional space, and 
thereby the obliquity of the linear waves is accounted for. 

2. Analysis 
2.1. Problem formulation 

For plane Poiseuille flow, the evolution of the non-dimensionalized vertical 
component, v(x, y, z ,  t ) ,  of a small three-dimensional perturbation velocity field is 
governed by the linearized equation 

This equation has been rendered non-dimensional with channel half-height h and 
centreline velocity U, as the characteristic length and velocity scales. The Reynolds 
number is defined as R = U, h l v ,  where v is the kinematic viscosity. x, y and z are the 
non-dimensional streamwise, vertical and spanwise directions, respectively. The 
dimensionless steady basic velocity profile is parabolic and is given by U = 1 - y2, 
and therefore U” = -2,  where the prime denotes the y-derivative. V2 denotes the 
Laplacian. Solid walls, extending to infinity in the x- and z-directions, bound the flow 
at y = & 1. Thus the impermeable and no-slip conditions at  the wall boundaries 
yield av 

aY 
v = - = O  a t  y = + l .  - (2) 
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Double Fourier transformation of v(x, y ,  z, t )  on the homogeneous spatial 
coordinates x and 2, with real positive wavenumbers a and p, respectively, and 
Laplace transformation on the time coordinate t ,  with complex s, transform (1) to 

(3) (D2-W24- i d  ( U+;- ;) (D2-lc2)QI+iuhU"# = -RA. 

Here D = d/dy, k2 = a2+p2, and the forcing function A is given by 

A = (&-k2)B a t  t = 0, (4) 

where d = ;(a, y, B, t )  and QI = QI (a ,  y, p, 8 ) .  By the transformation 

s = -iac, ( 5 4  
the homogeneous operator of (3) is identified with the traditional 0s operator. Yet 
another transformation 

(5 b )  
. k2 

c' = c+1- aR 
is carried out in order to avoid the computational difficulties due to the presence of 
k4 term in (3),  a t  large values of k. Consequently (3) can be rewritten as 

F a )  

q5=Dq5=0 at y = & l ,  ( 6 b )  

(D2-k2) D2q5-iaR(U-c') (D2-k2)q5+iaRU"q5 = -RA, 

and the boundary condition (2) as 

where 4 = #(a, y,  p, c'). 

is given as (compare with Gustavsson 1986) 
The formal solution to (6a, b )  obtained by the method of variation of parameters 

and 



16 R. Shanthini 

{ q5y):=1 are the linearly independent solutions to  the fourth-order linear homogeneous 
operator of (6a). (This operator will be referred to as the (reduced) 0s operator.) 

are the cofactors of {c$:):=~, respectively, in the matrix 

By successive differentiations of ri, with respect to  y, it can be shown that are 
the linearly independent solutions to the adjoint of the (reduced) 0s operator and 
thus satisfy 

(D2-k2)D2ri,-iaR(U-c’) (D2-k2)$-2iaRU’D& = 0. (9) 

Since the (reduced) 0s operator is symmetric in y, two of the four $”, and $3, are 
chosen to be symmetric and the other two, d2 and $4, antisymmetric with respect to  
y = 0. Therefore the functions q5” and their y-derivatives, a t  y = 0, are chosen such 
that 

The values of K ,  and their y-derivatives, a t  y = 0, are then calculated to be 

vl/(y = 0) = Identity matrix. (10a) 

(106) 

(11) Emn = q5m@n-q5&$n a t  y = 1 (m,n = 1,2,3,4). 

At a prescribed k - a R  combination, the poles of $ in the c’-plane, see (7a), are the 
zeros of the characteristic function E(c’, k, aR) = 0, where 

I v =  1 2  3 4 

4 0 0  0 1 
K; 0 0 - 1  0 
K;  0 1 0 k2 + i d (  1 - c’).  
K r  -1 0 -k2-iaR(1-c’) 0 

The forcing function A can conveniently be split into symmetric and antisymmetric 
parts, A ,  and A,,  as A = A,+d,. Finally, 

E = q3 = ($1q5i-q5i$3) = 0 a t  y = k l  (12a)  

E=E;4=(q52q5;-q5;q5,)=0 at y = f l  (12b)  

in the symmetric case, and 

in the antisymmetric case. 
Equations (12a, b )  are the relations that determine the temporal (reduced) 0s 

eigenvalues in the theory of normal modes. Thus a pole in the solution of the initial- 
value problem and an eigenvalue in the theory of normal modes refer to the same 
entity. The temporal eigenvalues (or the poles) c’ of plane Poiseuille flow are purely 
discrete and infinite in number (Schensted 1961). With one exception, these 
eigenvalues lie in the fourth quadrant of the c’-plane up to  about aR = 10000, 
according to the numerical calculations of Orszag (1971) and Mack (1976). At some 
k--aR combinations, two of the simple eigenvalues degenerate into one, thus leading 
to an eigenvalue of order 2 (or a double pole). At these critical points, not only E = 
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0 but also 3Elac‘ = 0. Double poles occur in a systematic manner which is described 
in detail in $3. The consequences of the occurrences of the double poles are considered 
next. 

2.2. Response of a double pole 
For a prescribed k-aR combination and a specified forcing function A ,  the 
evaluation of the components of Q, of (7a) is a matter of straightforward numerical 
computations. However #, being in the Fourier-Laplace space, is not informative 
enough. Since the explicit time dependence is of major interest, 6 is recovered upon 
Laplace inversion of Q, according to 

+im 

g(a, y, P, t )  = ‘s $(a, y, P, 8) est ds. (13) 27ti y-im 

From the relations (5a ,  b ) ,  
s = -a [ ic ’+s] .  

Thus the integration in (13) is transformed to 

-ia -co+iZ 

G(a,y,P,t) =xs #(a,y,P,c’)exp (14) 
m f i l  

where 1 = ( y / a )  + ( k 2 / a R ) ,  and y is so chosen that c’ = il lies above all the poles of 

The line integral of (14) can be transformed to a closed contour integral along 
contour r, which encloses all the poles of 4, provided the integrand in (14) integrated 
along vanishes. Here is a contour with infinite extensions, used for completing 
the contour r. Following the arguments of Schensted (1961), Q, can be shown to be 
analytic everywhere except at its poles. Consequently, using the Residue theorem, 
the integration to be performed, after substituting q5 of ( 7 a ) ,  is the following: 

4. 

where the contour q, with infinitesimally small radius, encircles the isolated pole 
ci in the same sense as the contour I‘. 

The contribution to 6 by an isolated pole ch( = c;) is then 

6 l6 = 2xi iaR Irv F g exp [ - (ic’ + s) at] dc’, 

where F and E represent F13 and G3 in the symmetric case, and F24 and E24 in the 
antisymmetric case. 

If c; is a simple pole ,  by use of the Cauchy Integral formula, we obtain 

when c;,,-(Ic2/&) < 0, 6 Je; decays exponentially with time. Since all the poles 
considered in this study are of this type, the simple pole cases are of no interest. 

If ch is a double pole, the Cauchy Integral formula yields 
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Considering the fact that both E and aE/ac' vanish at  the double pole and using 
Taylor series expansions of E and aE/ac' about the double pole, (18) can be rewritten 
as 

(19a) 8 lc; = i&[r ei8(at) + p e'g] exp 

where 

$1.; is a function of y and at, The time development of the amplitude R, of GIc; 
becomes 

(20) 

where ciu = ciO - (k2/&) from ( 5 b ) ,  and cia < 0 at the double poles investigated in this 
study. 

It is seen from (20) that R, = aRp at at = 0 and that R, decays exponentially to 
zero as at + m , The behaviour of R, in the interval at = 0 to 00 is crucially determined 

R,  = ~ B [ r ~ ( a t ) ~  + 2rpcos (0-5) (at) +p2]iexp [cio(at)], 

by the initial slope 

Three cases are of particular interest. 
Case (a) .  When (r/p) cos (0-5) > -cia, the amplitude R, grows with time for a 

short initial period and then decays to zero as shown in figure 1 (a) .  The coordinate 
(at, R,) corresponding to the maximum point is given by 

and (22b) 

where (22 c )  

If (R,), is large enough, the assumptions of the linear theory are violated and 
nonlinear effects may be initiated. The implications of such a state can only be 
analysed by nonlinear theories. On the other hand if (R,)m still lies within the range 
of the linear theory, the time taken for the maximum to be reached, 

t, = - (at),,, 
L%R 

plays an important role. Since CCR is a given number for each double pole, increasing 
the Reynolds number stretches t, so as to prolong the response of the double pole. 
Thus, the double pole acts almost as a neutrally stable mode, until t = t,, among the 
other exponentially decaying simple poles. 

Case (b ) .  When (r/p) cos (0-$ < -cia and Q2 < 0, R, monotonically decays in time 
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at 

FIGURE 1. Temporal development of the amplitude R, of the response GIc; at a double pole. (a )  
Case (a); ( b )  case ( b ) ;  ( c )  case (c). 

R, decays is characterized by the 
amplitude aRp, 

as shown in figure 1 (b). Since the decay is not purely exponential, the rate at  which 
time taken for, say, 25% decay of the initial 

where (at), is the positive solution to the nonlinear equation 

(0.75~)'  = {r2(at):+2rpcos ( 0 - < )  (at),+p2}exp{2ciO(at)d}. (24 ) 

The Reynolds number, in this case, stretches td so as to slow down the decay rate of 
R,. This time-stretching effect, even though also present in the simple-pole cases, can 
be more pronounced in the double-pole cases since the decay of the double-pole 
response is not purely exponential a t  finite at-values. 

Case (c) .  When ( r / p )  cos(O-<) < -cio and Q2 > 0, an interesting possibility 
occurs. Under these conditions, the at-values at which aR,/a(at) = 0, are either both 
negative or both positive. Of these two cases, the former is equivalent to case (b)  in 
the positive-at range. In the latter, as at increases from zero, R, experiences two 
extrema, a minimum followed by a maximum, and then eventually decays to zero, 
as shown in figure 1(c). The maximum point is expressed by (at), and (I?,), of 
(22a, b). Unlike in case (a), (R,)m may or may not be larger than the initial amplitude 
aRp. Consequently the time, which characterizes the temporal behaviour of R,, is 
taken to be t, of (23a) if 

Apart from stretching the characteristic time, increasing R also increases /3 until 
/3 = k, as k and aR are constants at  a double pole. In addition, since a + 0 as R + 00, 

structures elongated in the streamwise direction will be excited. 
Which of the cases (a-c) will actually occur is discussed in 54. 

>, 0.75aRp and to be t, of (23b) if otherwise. 
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3. The 0s eigenmode structure and the degenerating pattern 
3.1. Numerical method 

Poles or (reduced) eigenvalues c' were evaluated, a t  prescribed k and &, by 
numerically solving the (reduced) 0s equation 

(D2-k2) D2+,-iaR(U-c') (D2-k2)+y+iCCRUN+y = 0, (25) 

with the condition that {q5u]t-l should satisfy the eigenvalue relation = 0 or 
E24 = 0 a t  the wall y = 1 (see (12a, b ) ) .  Adams interpolation formula with four steps 
was used for numerical integration of (25) .  Integration was started a t  the centreline 
y = 0, with the values of +" and their y-derivative specified by (lOa), and proceeded 
towards the wall. Taylor expansion was used to evaluate the starting solutions at  two 
backward points. The Gram-Schmidt orthogonalization procedure was used to 
eliminate the round-off error problem in cases where the growth of the solutions was 
so large as to destroy the eigenfunctions. Initially guessed values of c' were geared to 
convergence by the Secant method. This numerical scheme was adapted from that 
of Gustavsson (1981). The accuracy of the scheme was assured by comparing the 
calculated eigenvalues with those of Orszag (1971) and Mack (1976). Excellent 
agreement was observed with all but the unstable eigenvalue, which hardly 
converged. An increasing number of integration steps, between y = 0 and y = 1, were 
required for the convergence of c' as ci (the imaginary c') approached zero. In  
addition, convergence in this region demanded frequent orthogonalization steps 
when c: (the real c') was in the range of 0 to about 8 and almost no orthogonalization 
when c i  was in the range of about $ to unity. 

3.2. General behaviour of the eigenmodes 
The first set of eigenvalues were obtained at k = 0 and a t  non-zero aR. This k - a R  
combination is physically absurd, but it served as a good starting point. Asymptotic 
expressions of the eigenvalue spectra a t  small &-values, derived using regular 
perturbation expansions (see e.g. Drazin & Reid 1981, p. 158), a t  k = 0 are 

G' = (:-L)-i(g) (n = 0 , 2 , 4 ,  ...), 
3 2P; 

with p ,  = ( n + 2 )  n / 2 ,  in the symmetric case, and 

2 5  
c' = (-+-)-i(g) 3 6q; 

(n  = 1,3,5,  ...); 

with qn z 1.43On, 2.459x, 3.471n,. . . , - (n+2)  n/2 for larger n, in the antisymmetric 
case. 

At Ic = 0 and 03 = 25, the eigenmodes are highly damped, and their streamwise 
phase velocities approach $ of the centreline velocity as the mode number increases. 
The eigenmodes have been numbered in the order of decreasing c; a t  a low &-value. 
The locations of the symmetric (S) and the antisymmetric (A) eigenvalues in the c'- 
plane a t  k = 0 and aR = 5000, traced by gradually increasing uR from about 25 to 
5000, are shown in figures 2 (a) and 2 (b) ,  respectively. As aR is increased from about 
25 a t  k = 0, the eigenvalues move in the direction of increasing ci, the higher modes 
moving almost along the S-branch (line ci = g), up to about ci = -0.35. With further 
increase in aR, the eigenvalues move either towards c' = ( l , O ) ,  that is along the P- 
branch, or towards the origin c f  = ( 0 , O ) .  In  the latter direction, the symmetric 
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-0.4 

-0.5 

-0.6 

- io S15 

1 S16 
- - : aR = 5000 curve (k = 0 to 10) ~ 
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o : at aR = 5000, k = 0 

: A, P, S branches .______ 
j s  

(4 0 
A1 ,., 

-0.4 

-0.5 

- 0.6 

I *. I 

A9 :+A13 
A14.i 

1 A15 
I 

A16 

- + : at aR = 5000, k = 0 

__ : aR = 5000 curve (k = 0 to 10) 

- .------ : A, P, S branches 

: A,, A, branches j s  

eigenvalues move along the A-branch whereas the antisymmetric eigenvalues move 
along the upper A-branch (A,) or the lower A-branch (AL). There exists a pattern in 
which the modes are distributed among the branches at increasing aR. This pattern, 
first found by Gustavsson (1986), is cyclic and has been confirmed in this study. The 
symmetric modes follow the order 

A-P-A-P-P 

for every 5-mode, and the antisymmetric modes follow the order 

A, - P-P -A, - P 

for every 5-mode. It is to be stressed here that even though the eigenmodes are 
grouped along three major branches A, P and S following the classification of Mack 
(1976), the grouping of this study has been carried out at k = 0, as in Gustavsson 
(1986), not at k = 1, as in Mack (1976). 
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As k increases from 0, the symmetric eigenvalues, which lie along the A-branch a t  
k = 0 and at high aR ( = 5000 in this case), move alternately to  upper and lower sides 
of the A-branch, as shown in figure 2 (a) .  With further increase in k, they curve back 
and move towards the A-branch. With increasing k, as shown in figure 2 ( b ) ,  the 
antisymmetric eigenvalues along the A,, and A, branches at  high aR (=  5000), also 
move towards the A-branch. Both the symmetric and antisymmetric eigenvalues 
along the P-branch at high & curve back to  the same branch in a simple manner, 
as k is increased. It is of relevance to realize that as k+ GO, equation (25)  
approaches 

D2q5v-i&(U-c’)q5, = 0. 

This equation, with boundary conditions 9 = 0 a t  the wall y = 1 ,  yields the vertical 
vorticity eigenvalues which lie along the A, P and S branches. For more details about 
the vertical vorticity modes, the reader is referred to Gustavsson (1986). 

In  order to acquire a better insight into the behaviour of the eigenmodes, the first 
few of the symmetric as well as the antisymmetric eigenmodes are explored in detail 
in ss3.3 and 3 .4 .  

3.3. Symmetric modes 

Figure 3 ( a )  shows how the eigenvalues corresponding to  the first two symmetric 
modes S1 and S2 change their locations in the c‘-plane with changing k and/or aR. 
Solid curves of figure 3(a )  represent the k = 0 curves of both Sl and S2. The aR- 
curves of X i  are represented by the dashed curves and those of S2 by the dotted 
curves. (The curve along which k is a constant is referred to  as the k-curve, and along 
which aR is a constant as the &-curve.) The rings along each aR-curve represent 
k = 2 , 3  and 10, respectively. When k increases from zero at constant uR, the higher 
aR (=  500 and 5000 for example)-curves of S1 curve back to the A-branch and those 
of S2 back to the P-branch, whereas the intermediate aR (=  200 and 100 for 
example)-curves extend across the c’-plane towards the opposite branch in either 
case. The &-curves of both S l  and 52 not only characteristically change their shapes 
but also do so across the same range of &. An enlarged view of this critical region, 
confined by the rectangle PQRS in figure 3 (a ) ,  is given in figure 3 ( b )  with a few more 
k-curves represented by solid lines. The k = 2 curve of Sl starting from aR = 200 of 
S1 (point C) reaches aR = 500 of S1 (point B), and then continue to  move towards 
c’ = (0,O) meeting the &-curves of S1. The k = 3 curve of S1 starting from & = 200 
of S1 (point D) reaches point E which lies on the cdi = 500 curve of S2 not of S1. With 
further increase in aR, this k = 3 curve moves towards c’ = (1,O) meeting the 
&-curves of S2, in contrast to the k = 2 curve of S1. Therefore one observes that the 
k-curves of S1 strikingly change their behaviour somewhere between k = 2 and 
k = 3 in the &-range 200 to 500. Similar behaviour is also displayed by the k-curves 
of 52 as shown in figure 3 ( b ) ,  where points G ,  F, H and A are the counterparts of the 
points C, B, D and E, respectively. 

The curious feature of figure 3 ( b )  is what points A and E represent. Point A can 
represent either mode Sl a t  k = 3 and cdi = 500 or mode S2 at  the same k-aR 
combination. The same is true for point E. These observations show that the modes 
S1 and 52, when put together, mutually complete each other. Consequently these 
modes lose or rather exchange their identities in the region enclosed by 
ABCDEFGHA in figure 3 ( b ) .  The nature of this mode exchange suggests that it is 
connected with a mode coalescence, where two distinctly different eigenvalues 
degenerate into one single eigenvalue of order 2, i.e. to form a double pole. The k- and 
&-ranges across which the eigenvalues degenerate are obviously the same ranges 
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-0.05 

: aR-curve of S1 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

4 

- 

across which the k- and &-curves significantly change their behaviour. Therefore the 
occurrence of a double pole and the k- and &-ranges across which it occurs can easily 
be predicted by closely examining the detailed maps of the k- and &-curves of the 
eigenmodes concerned. 

Maps of the symmetric modes 53, 54 and S5 can be seen in figures 4(a ) ,  4 ( b )  and 
4(c), respectively. The basic k = 0 curve and few &-curves are shown. The maps of 
the first five symmetric modes S1 to 55 are different from each other; however, maps 
of the modes 56, 57, 58, 59 and SIO, which are not produced in this paper, 
qualitatively resemble the maps of S1 to S5, respectively. This repetitive nature 
should not be surprising if one considers the cyclic nature in which the symmetric 
modes branch, as reported in $3.2. 

The possible symmetric mode coalescences, obtained by carefully examining some 
of these maps, are reported in table 1. The degenerating mode pairs are joined by 
curves and the respective branches chosen by the modes at k = 0 are specified below 
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FIGURE 4. Locations of the symmetric modes (a )  53, ( b )  94 and ( c )  95 in the c'-plane. 
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Mode s1-s2 83-S4 S<S6-S7 SSe 
Branch chosen at k = 0 A P A T P W A  P A 

TABLE 1, Degenerating symmetric mode pairs 
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FIGURE 5. Degenerating pattern of the first two antisymmetric eigenmodes A1 and A2 

each mode. Table 1 provides a complete list of the degeneracies possible among the 
modes Sl to S7. The double curves between S5 and 56 reveal that it is possible for 
two modes to degenerate with each other more than once. Except for the bridging 
between modes 55 and S6, the pattern in which the modes degenerate seems to repeat 
for each 5-mode group, as indicated by table 1. The repetitive nature, already 
observed twice with the symmetric modes, strengthens the above speculation. 
Further discussion of the degeneracies follows a quick survey of the antisymmetric 
modes. 

3.4. Antis ymmetric modes 
The first two antisymmetric eigenmodes A1 and A2 are shown in figure 5. The basic 
k = 0 curve and &-curves a t  & = 200, 300 and 5000 of each mode are drawn. The 
characteristic changes in the shapes of &-curves, shown in figure 5, and the 
associated k-curves behaviour are present with both A1 and A2. Consequently there 
is a degeneracy in the ranges aR = 20CL300 and k = 0-5. 

Table 2 shows the degeneracies possible among modes A1 to A5. The fact that 
mode A3 does not degenerate a t  all can be explained by its map shown in figure 6, 
where the &-curves of A3 more or less creep along the k = 0 curve. The k- and CCR- 
curves of the antisymmetric modes, in general, span a smaller area of the c’-plane, as 
can be concluded from the maps of A l ,  A2 and A3 and the maps of A4 and A5, which 
are not produced here. This is probably why the number of degeneracies among the 
antisymmetric modes is comparatively smaller than the symmetric counterpart. In 
anticipation of a qualitative repetition of the maps as well as the degenerating 
pattern by each 5-mode group, no other antisymmetric modes were mapped. 
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I TABLE 2. Degenerating antisymmetric mode pairs I 
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3.5. Pin-pointing the double poles 
Having confined the first few degenerating mode pairs, we seek to pin-point the 
double poles with satisfactory accuracy. The poles c’ are the zeros ofthe characteristic 
function E(c’, k,aR), which is an entire function of c’, k and &. Its analytical 
properties can thus be exploited to obtain a dispersion relation in the vicinity of a 
double pole (cb, k,, do). Both E and aElac’ are zero at  a double pole so that a Taylor 
series expansion of E about such a point becomes 

where 1, represents the value at  the double pole. 
Since only the (c‘, k,aR) that are solutions to E = 0 are used in (26), E(c‘, k,aR) 

vanishes. Thus the dispersion relation obtained by the first approximation to (26) 
takes the following simple form: 

(c’-c;)’ = A(k-k,)+B(&-~R,), (27 ) 

where A and B are complex constants and can easily be deduced from (26). 
The typical behaviour of the k- and &-curves in the neighbourhood of a double 

pole is illustrated by figure 7 ,  which displays the degenerating mode pair SlGS2. By 
knowing three points either along a constant aR-curve or along a constant k-curve, 
cb can readily be evaluated. With this c;, and by exploiting the fact that the 
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i 
-0.133 

-0.134 - 

-0.135 - 

c; 
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c: k = 2.53910 curve 

d: k = 2.53905 curve 

-0.136 

-0.137 

-0.138 

c: 

FIGURE 7. Behaviour of the degenerating modes 51 and S2 in the neighbourhood of the 
degeneracy 51-52. 

dispersion relation (27) is a mixture of real and complex entities, k, and a& can easily 
be calculated. The reliance on these numerical values of cI,, k, and a& to represent 
the double pole does of course increase as the curve concerned gets closer to the 
double pole. cI, is then corrected by evaluating it from the eigenvalue relation 
E = 0, at the calculated k,  and a&. The numerical zero of E is chosen to be O( lo-*). 
Since aE/ac‘ also vanishes at the double pole, as a further check, aE/ac’ is 
numerically evaluated a t  the calculated ch, k, and &,. Choosing a satisfactory 
numerical zero of (aE/ac’)J,; can be achieved as follows. In the Taylor series expansion 
of E about the double pole, the terms El,; and (c’-ch) (aE/ac’)l,; are dropped as they 
are identically zero. This step can numerically be justified when these terms are very 
small and of a t  least the same order. Since E = 0(10-*) and (c’-GI,) - 0(10-5), the 
numerical zero of (dE/ac’)J,; can satisfactorily be chosen as O( The dispersion 
calculations are repeated along curves closer and closer to the double pole until (aE/ 
ac‘)l,; reaches the required order of magnitude. The (cI,, k,, aR,) a t  which it happens 
is taken to represent the double pole. 

The major drawback in such a criterion to pin-point a double pole is the excessive 
number of eigenvalue computations required to pin-point one single double pole after 
i t  has been confined to coarse k- and &-ranges. Dispersion relations obtained by 
higher approximations to the Taylor series expansion (26) seem to bring down the 
number of eigenvalue computations but, in reality, such relations led to  either 
clumsy means or no means of pin-pointing cI,, k, and &, and thus were discarded. 

An elegant method of pin-pointing double zeros of a characteristic function has in 
fact been discussed by Gaster & Jordinson (1975). The function concerned was an 
analytical function of two complex variables, the streamwise wavenumber a and the 
frequency w ( =  ac). In  the neighbourhood of the double zero, w was expressed in 
terms of a as a sum of one regular series and the square-root of a second regular series. 
The rest of the calculations to pin-point the double zero was simple and rapid. An 
extension of such a method of series description to  a more complicated problem, such 
as the one in this paper, is a t  the moment not clear. Nevertheless, an indirect and 
thus complicated way of employing the technique of Gaster & Jordinson to pin-point 
double zeros of a characteristic function in three variables has been discussed by 

2 FLM 201 
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-0.1 

-0.2 

CI 

-0.3 

Mode pair ko a% c; kin = &,/& abs (aE/ac’),; 

Symmetric degeneracies 
s1-s2 2.539076 2 16.607 6 0.726353 7 85.3 0.038 1 

- iO.134 815 2 
s3-s4 0.88582 363.771 5 0.640 603 3 410.6 0.001 8 

- i0.349 9482 
s3-s5 1.891 178 527.6455 0.635 706 1 279.0 0.0025 

- i0.383 5066 
S5-S6 0.50635 904.262 2 0.669 11 19 1785.8 0.002 8 

-i0.3179580 

Antisymmetric degeneracies 
A1-A2 2.2574 230.29 0.7 19 343 2 102.0 0.003 1 

-i0.207 372 1 
A4-A5 2.8047 620.702 0.644491 8 221.3 0.0002 

- i0.396 962 9 

TABLE 3. The first four symmetric and the first two antisymmetric degeneracies pin-pointed 
in this study, see also figure 8 
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FIGIJRE 8. Locations of the first four symmetric (0) and the first two antisymmetric ( + )  
degeneracies, listed in table 3, in the c-plane. 

Koch (1986). However, we did not adapt Koch’s procedure to our problem since 
Koch’s method is not simpler than the method used in this work. A mathematically 
more elegant method of pin-pointing the double zeros of the characteristic function 
E(e’,k,CLR) is of interest since it will facilitate the analysis of more double poles of 
plane Poiseuille flow, and also the investigation of other flow systems, such as plane 
Couette flow. 

The double poles pin-pointed in this study are listed in table 3 along with Kin = 
aR/k and the absolute value of (&?3/&’)lc;. It seems, from tables 1 and 2, that one 
necessary condition for two modes to degenerate is that at k = 0, one of these two 
modes should choose the A-branch and the other the P-branch. It is in the 
neighbourhood of the point where the S-branch splits into A and P branches that the 
aR-curves change shape. Hence, the eigenmodes always degenerate in this region as 
typically demonstrated by figure 8, in which the degeneracies are shown in the c- 
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plane (not in the c’-plane). As a consequence, the degeneracies have streamwise phase 
velocities around and damping rates in the range of 0 to about -&&. Considering 
the repetitive nature of the eigenmode behaviour, it is reasonable to assume that 
there is an uncountable number of double poles occurring in the above-described 
region, among the infinitely many isolated poles of plane Poiseuille flow. A formal 
mathematical proof of this conjecture should be possible but it was not attempted in 
this work. 

4. Excitation of degeneracies 
In this section, we discuss the quantitative measures of the responses of the first 

few degeneracies listed in table 3, when subjected to external excitations. The 
contribution to 8 by a double pole ch, written as GIc;, was derived in $2.2 and is 
expressed by (19ad) .  Evaluation of $Ic; requires knowledge of F ( (7c)  or ( 7 d ) ) ,  E 
((12a) or (12b)), and their derivatives with respect to c’, at the double pole. 
Evaluation of F and E requires that the linearly independent solutions, {$,}:=, and 
{&}:el, of the 0s equation (25) and its adjoint equation (9) be known. These 
equations were thus solved by numerical methods similar to that described in 53.1. 
In addition, the forcing function A,,  where b = s in the symmetric case, and b = a 
in the antisymmetric case, should be specified. A ,  given by (4), is determined by 
$( t  = 0) ,  the double Fourier-transformed vertical component of the initial per- 
turbation velocity. For the sake of generality, the responses due to any but small 
disturbances are of interest. Therefore, 8,(t = 0) is taken to be arbitrary and thus can 
be expanded in terms of a complete set of orthogonal symmetric (or antisymmetric) 
functions. This also applies to A,. As a first attempt, A is expanded in terms of the 
Chebyshev polynomials of the first kind {T,}Z+ as 

and 

where T,(y) = cos (ncos-’ y). (28c) 

The symmetric polynomials are given by even n and the antisymmetric by odd n. 
The responses due to different members of the Chebyshev family were 

independently investigated. With n specified for T,, the integration in (7c) or (7d)  was 
numerically performed using Simpson’s extended rule. The c’-derivatives of F and E 
at the double pole ci were evaluated by perturbing the functions concerned about 
cI, by a small amount cYC, and then by using appropriate finite-difference formulas. The 
reliability of the numerical value of the derivative in question has been affirmed by 
carrying out numerical experiments with different lengths of 8, and in different 
directions. The numerical values of reie (196) and peic (19c) changed very little 
when the number of numerical steps between y = 0 and y = 1 were increased from 
300 to 600 through 60 steps at a time. The amplitude R, of (20), evaluated at different 
y-positions with specified at, remained unchanged when A ,  given by T,, which is 
purely real, was replaced by TneiA, where h was varied from 0 to 2 ~ .  

The first symmetric double pole 51-52, when excited by the polynomial z, 
exhibits temporal growth of the amplitude R, in the sense of cases (a )  and ( c )  
described in 52.2. Growth is observed around the centreline of the channel (y = 0) 
and is shown in figure 9, at chosen y-positions. The largest ratio of the maximum 

2 4  
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FIQURE 9. Temporal development of the amplitude R, of the double pole S l S 2 ,  at four 
different y-positions, when excited by T,. 

amplitude (Rr)m to the initial amplitude R, (=  OlRp), in this case, is about 6.605, 
occurring a t  at = 5.743, and is observed close to y = 0.25. However, the initial 
amplitude a t  y = 0.05, for instance, is greater than the maximum amplitude a t  
y = 0.25, but the ratio of (RT),  to R, at y = 0.05 is only 1.225. Thus, the chances 
of nonlinear consequences, initiated only by the magnitudes of (R,)m, seem slim in 
this case. 

Nevertheless, the &values corresponding to (R,.)m, a t  certain y-positions, suggest 
that the time-stretching phenomenon, discussed in 52.2, can be of importance. The 
(non-dimensional) time a t  which the maximum of R, occurs a t  y = 0.25, for instance, 
is related to the Reynolds number, according to (23a), by 

t ,  = 5'743 R = 0.0265R. 
2 1 6.6076 

Despite of the smallness of the magnitude of (t,/R), the characteristic time (t,) spans 
the range 29.2 to 58.3 in the critical R range 1100-2200, discussed in the 
introduction. This means that the response of Sl-S2, a t  y = 0.25, is in the growing 
phase until t = 58.3 at R = 2200, when excited by q. The numerical quantities 
above, however, should not be taken as final because 

The first antisymmetric double pole Al-A2 also exhibits temporal growth in the 
sense of case (a ) ,  when excited by q. Growth is observed away from the centreline 
of the channel in contrast to that of Sl-S2, and is shown in figure 10. The maximum 
amplitude a t  any y-position, in the case of Al-A2, does not exceed twice the 
corresponding initial amplitude. 

The responses of S l S 2 ,  when excited by the other symmetric Chebyshev 
polynomials, were also studied in detail and the results are demonstrated a t  a chosen 
y-position (y = 0.25) in figure 11.  Growth in the sense of case (a )  is observed with 

= 8y4-8y2 + 1 ,  bounded by 1,  has two zeros in the 
interval y = [O, 11, and thus resembles a slightly distorted cos (2x9) function. 
Interestingly, the response of Sl-S2 when excited by cos (2x9) is somewhat similar 
to the response due to q. The polynomials To and T2 give rise to higher initial 

alone is not A,.  

as discussed earlier. 



Degeneracies of the temporal Orr-Sommerfeld eigenmodes 

: 0.35 

: 0.45 

: 0.65 

31 

at 

FIGURE 10. Temporal development of R, of Al-A2, at four different y-positions, when excited 
by T,. 
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FIGURE 11. Temporal development of R, of SI-S2, at y = 0.25, when excited by different T,. 

amplitudes than the other T, do, but the amplitudes due to T, and T, monotonically 
decay to zero. In  the interval y = [0,1], = 1 has no zero and T, = 2y2- 1 has one 
zero. When S 1 S 2  is excited by T, (n > 4), growth in the sense of case (a)  is seldom 
observed, but growth in the sense of case (c )  is present. The time-stretching 
phenomenon is therefore in effect. As n increases, the number of zeros of T,, in 
y = [0,1] also increases, and the response of Sl-S2 due to  T, becomes less and 
less pronounced as can be seen in figure 11.  

The responses of Al-A2, when excited by the other antisymmetric Chebyshev 
polynomials are illustrated in figure 12 at a chosen y-position (y = 0.35). The 
polynomial T5 = 16y5 - 20y3 + 5y, which causes growth in the sense of case (a ) ,  also 
has two zeros in y = [0,1]. The qualitative behaviour of the responses of Al-A2 due 
to T, (n = 1 , 3 , 7 , 9  ,...) resemble those of Sl-S2 due to T, (n = 0 , 2 , 6 , 8  ,... ), 
respectively, and thus require no extra comments. 
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FIGURE 12. Temporal development of R, of Al-A2, at y = 0.35, when excited by different T,. 

The overall response of a degeneracy due to the arbitrary forcing function A ,  can, 
in principle, be evaluated by adding the responses due to different polynomials T,, 
after weighting them by the corresponding constants b,. The constants b, can, 
though by a tedious means, be evaluated by substituting A ,  and A,, given by 
(28a, b ) ,  into j-; 4 Y )  cash ( I c y )  dY = 0 

and s,’A,(Y) sinh (Icy) dy = 0, (29 b )  

(294 

respectively. These conditions are deduced (see Gustavsson 1986) from the fact that 
ib(t = 0) is subjected to the boundary conditions 

Gb(t = 0) = D’&(t = 0) = 0 at Y = & 1. (30) 
The responses of degeneracies other than the first symmetric and the first 

antisymmetric ones, listed in table 3, were also investigated by exciting them by the 
Chebyshev polynomials. The temporal development of the amplitude R, in each of 
these cases is rapid, though not purely exponential, decay to zero, as illustrated by 
figure 13 (a ,  b ) .  This behaviour is not surprising if one considers the corresponding 
damping rates cio (=  c;,,-k2/&), given in figure 13(a, b ) ,  of these degeneracies. 
Therefore, it seems that the damping rate of a degeneracy could be used as an 
indicator in deciding whether or not that degeneracy be subjected to detailed 
analyses in search of growth and, hence, the consequences. 

5. Discussion 
Among the degeneracies listed in table 3, the first symmetric degeneracy Sl-S2 

and the first antisymmetric degeneracy A1-A2 exhibit temporal growth of the 
amplitudes. In the cases of the other four degeneracies, the amplitudes rapidly decay 
to zero. These results are, strictly speaking, valid only in the Fourier (wavenumber) 
space. But it is probable that the temporal histories of a degeneracy both in the 
Fourier space and in the real space are the same. 
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FIQURE 13. Temporal development of R, corresponding to (a)  the first four symmetric degeneracies, 
at y = 0.25, when excited by !& and ( b )  the first two antisymmetric degeneracies, a t  y = 0.35, when 
excited by T5. 

The damping rate of a degeneracy should, as a rule, be low enough for it to  exhibit 
growth. In addition, Rmin (=  &/L) of a degeneracy should correspond to the laminar 
region for it to contribute to the transition mechanism. We have, however, analysed 
only six of the infinitely many degeneracies of plane Poiseuille flow. It seems, from 
table 3, that degeneracies among the higher eigenmodes may have higher damping 
rates and higher values of &,, and hence may be of marginal importance from the 
transition point of view, although we cannot prove that it is so. 

The temporal (or spatial) responses of double poles rapidly developing into 
relatively large amplitudes, and their nonlinear consequences have also been the 
major concern of some past works, such as Benney & Gustavsson (1981), Koch 
(1986), Gustavsson (1986). None of these studies, including the present one, has so far 
given any strong evidence that the amplitudes of the double-pole responses can grow 
so large as to violate the assumptions of the linear theory. 
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However the time-stretching phenomenon discussed in this study, yet another 
facet of the degeneracy, can be active even if there is only a slight growth of the 
amplitude, as revealed by the degeneracy S1-S2 for instance. If the characteristic 
time, t ,  of (23n),  is stretched long enough, a new disturbance may see the basic 
profile not as parabolic but as parabolic plus the response of the degeneracy. 
Investigating the consequences of such a state is a natural development of the 
present study, and will be completed in due course. It seems that, among the 
degeneracies analysed in this study, S1-S2 and A1-A2 are the most suitable 
candidates to be subjected to further growth-related investigations. 

We here digress to mention that, strong linear waves, with wavenumber E = 1.89 
and streamwise phase speed c, = 0.53, accompanying turbulent spots in plane 
Poiseuille flow at R = 1500 were experimentally located by Henningson & Alfredsson 
(1987). The numerical simulations of a turbulent spot in plane Poiseuille flow, by 
Henningson (1988), also showed similar waves, having Ic = 1.88 and c, = 0.62, at  the 
same Reynolds number. Can these observations be accounted for by the degeneracy 
53-55, having k = 1.891 178 and c,  = 0.6357061, despite the rapid decay of its 
response P A definite answer t,o this question awaits an enquiry into other possible 
aspects of degeneracies, such as their effects upon the disturbance energy. 

I thank L. HLkan Gustavsson, my study supervisor, for suggesting the area of this 
research and for his continued interest. This work has in part been supported by the 
National Swedish Board for Technical Development through its program for basic 
research (STUF). 
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